# Chapter 13. Mountain Counties Area of California Setting

The Mountain Counties Area of California includes the foothills and mountains of the western slope of the Sierra Nevada and a portion of the Cascade Range. The area extends from the southern tip of Lassen County to the northern part of Fresno County (see Figure 12-1) and covers the eastern portions of the Sacramento River, San Joaquin River, and Tulare Lake hydrologic regions. The foothill and mountain areas of these three hydrologic regions are grouped together for the purpose of presenting their common characteristics.

The area generally includes all or portions of Shasta, Lassen, Plumas, Butte, Sierra, Yuba, Nevada, Placer, El Dorado, Amador, Alpine Calaveras, Tuolumne, Mariposa, Madera, and Fresno, counties. Elevations vary from around 100 feet near the edge of the valley floor to more than 10,000 feet at locations along the Sierra Nevada and Cascade Range crestline. The major rivers in the area include the Sacramento, Pit, Feather, Yuba, Bear, and American Rivers in the Sacramento River Region; the Cosumnes, Mokelumne, Calaveras, Stanislaus, Tuolumne, Merced, Chowchilla, Fresno, and San Joaquin Rivers in the San Joaquin River Region; and the Kings, Kaweah, Tule, and Kern Rivers in the Tulare Lake Region.

#### Climate

The climate is closely tied to the topography and varies widely throughout the area; mean annual precipitation ranges from more than 80 inches at Strawberry Valley, east of Lake Oroville, to less than 12 inches at Fresno County. Much of the precipitation falls as snow in the higher elevations in the winter. Water managers throughout the area rely on this natural storage as snow in the winter months and capture and/or divert spring snowmelt runoff.

## **Population**

The 2000 population of the area was about 542,000, less than 2 percent of the state total population. However, the effects of urbanization are beginning to impact some of the foothill areas. Population growth in the area from 1990 to 1995 was almost 10 percent. The State's growth rate during the same 5-year period was about 7 percent. Although total population in the area is low, the area's rate of growth is projected to continue to outspace that of the state as a whole. The projected population increase between 1995 and 2020 is about 85 percent for this foothill and mountain area, while the state's growth is projected at less than 50 percent.

Per capita water use varies significantly throughout the area, from about 115 gallons per capita per day (gpcd) in the Volcano are of Amador County to about 420 gpcd in the southwestern corner of Lassen County.

#### **Land Use**

The economies of these mountain and foothill areas have historically been tied to the land. Tourism, ranching, timber harvesting, limited mining, and agriculture, primarily in the lower elevations, continue as an economic base for many communities. A limiting factor for the area's population growth is the relatively small amount of land in private ownership. The federal government is the dominant landowner

in the area, with most of the higher elevation lands being under the management of the U.S. Forest Service or National Park Service.

Much of the state's developed water supply originates in this upland area, including several CVP and SWP reservoirs. Although the region has abundant water supplies, the vast majority is unavailable locally due to prior appropriations for downstream or out-of-basin users. Local use of water originating in the region is less than 3 percent of the total statewide consumption.

### **Water Supply**

The primary source of public consumptive water supply is locally developed surface water (almost 70 percent). Water is either diverted directly from the area's streams and lakes or from local storage reservoirs and conveyance facilities. Many of the residents in the unincorporated areas are dependent on small, independent municipal water systems, or on untreated water diverted directly from one of the numerous raw water ditch delivery systems that run throughout the region. In addition, many individual water users throughout the area have developed their own supplies,

Regulation of Ditch Water – Water users in the foothills who obtain their water from ditches are no longer able to use that water for domestic purposes. New rules promulgated by the California Department of Health Services and the U.S. Environmental Protection Agency prohibit residential customers from cooking, drinking or brushing teeth with ditch water, including water processed by home treatment systems. In order to meet these requirements, several water districts are requiring customers to receive 5 gallons of bottled drinking water per month. This quantity meets the state's minimum estimate of what a normal household would use in a month.

typically groundwater for domestic use and surface or in limited cases, groundwater for agricultural use.

Mining operations (especially hydraulic mining) of the gold rush era started much of the water supply development to the foothill and mountain areas. Many of those early mining water systems were later taken over by other water users. Pacific Gas & Electric Company and other hydropower utilities subsequently developed an extensive hydroelectric power and consumptive water use delivery system throughout the Sierra Nevada, often incorporating some of the old mining ditches. Most of these conveyance facilities devoted to consumptive water delivery were later transferred to local public entities. Many of these local water agencies still use the ditch systems as a primary means of water delivery to both their water treatment plants and to the individual water users located along the route to the treatment facilities. Many of these old and unimproved conveyance systems, including ditches, flumes, and pipes have been in use for more than 100 years.

While logging and mining operations have decreased, recreation and tourism have increased with consequent effects on water use and quality. Many of the foothill and mountain areas possess significant numbers of second homes and vacation rentals. This means that, although there is no permanent population associated with these homes, water use can be high on most weekends during the popular summer and winter vacation periods. For example, Groveland Community Services District, near Yosemite National Park in southern Tuolumne County, estimates that the service area population more than doubles during peak vacation periods. Tourism use, which is most significant in the central Sierra, tends to inflate the area's per capita water use.

## The California Water Plan Volume 3 – Regional Reports Chapter 13. Mountain Counties of California

The majority of the area's irrigated acres are found in the foothills and mountains of the Sacramento River Region. The dominant crop is pasture, with about 70 percent of the irrigated acreage. Other crops with significant acreage include alfalfa, grain, wine grapes, apples and other deciduous fruit, and olives. Projections indicate almost no change in irrigated acreage through 2020, with a slight change in crop mix. Significant unirrigated areas are used for rangeland for livestock.

Environmental water use in the area is limited to instream flow requirements and one managed wetlands. Instream flow requirements within the area are found on the Stanislaus River, below Goodwin Dam, and the Tuolumne River, below La Grange Dam. The controlling instream requirements for the remainder of the area's many streams are located on the valley floors. In addition, many of the smaller reservoirs in the area do have instream, flow requirements, which are met by the project operators. However, only the largest instream requirement for a given stream is accounted as a demand and those requirements are more often found downstream of this foothill and mountainous area. Most environmental water flows originating from within the area result from meeting required environmental flows outside the area on the valley floors to the west. The Ash Creek Wildlife Area, a managed wetland, is located in the region.. The managed portion of the area includes 600 acres of permanent emergent wetlands, 700 acres of seasonally flooded lands, 1,000 acres of irrigated forage crop, and 3,600 acres of wet meadow. Water supplies include diversions from Ash Creek, Roberts Reservoir, and groundwater. The annual water use by the wildlife area is 13,000 acre-feet.

Groundwater constitutes about 16 percent of area-wide water supply and is generally a supply for single family homes. Groundwater availability is generally limited to fractured rock and small alluvial deposits immediately adjacent to the area's many streams. Many individuals in the area are wholly dependent upon groundwater for domestic use. A limited number of farmers have developed wells with enough production to irrigate their lands in all but the driest of years. In addition, many homes are not connected to a municipal water system and are typically dependent upon domestic wells or raw untreated water delivered through an open ditch system. In general, groundwater is inadequate and unreliable due to the limitations of the fractured granite to perform as a groundwater basin.

Other sources of supply, present in the area to a limited degree include Central Valley Project with other federal project water, locally developed imports, and reclaimed wastewater. El Dorado Irrigation District and Foresthill Public Utility District possess water supply contracts for CVP supply. Calaveras County Water District and Union Public Utility District receive water from New Hogan Reservoir, which is operated by the US Army Corps of Engineers. Irrigated pasture in Sierra County receives water imported from the Little Truckee River in the North Lahontan Region. In addition, PG&E exports water from Echo Lake near Lake Tahoe in the North Lahontan Region as part of a hydropower diversion to the American River basin. Reclaimed wastewater is used to a limited extent to irrigate golf courses and meet other landscaping and agricultural needs.

The following water balance table summarizes the detailed regional water accounting contained in the water portfolio at the end of this regional description. As shown in the table, most of the area's water flows to other hydrologic regions.

## State of the Region

#### **Challenges**

By virtue of their location, domestic water users in the Mountain Counties generally benefit from higher quality water than most other Californians. Many water supplies are from pristine foothill or mountain sources, which are largely unaffected by agricultural or urban pollution. Unfortunately, all too often, this higher quality water is often degraded while in transit through the numerous open ditch delivery systems. Drainage from abandoned mines contributes metals and other water quality problems to downstream water bodies. Mercury was often brought into the region as part of the gold mining process. Erosion from natural flooding, logging and land development, and areas devastated from forest fires, causes sedimentation, and elevated temperatures due to the loss of riparian shade canopy. This is a concern to both domestic water treatment operations and migration and spawning of salmonids in areas not already blocked by water impoundments.

The biggest water issue facing users in the area is the need to improve the water supply reliability of the various systems throughout the area. Despite rapid population growth, the customer base of water systems is still relatively small. This smaller base, coupled with previous development of the less costly reservoir sites, as well as the topography, makes system improvements expensive and makes interconnections between systems impractical. Also, a limited array of options is available to meet current and projected needs due to the local water users' limited ability to pay and the impossibility of employing groundwater banking and conjunctive use strategies. Many local officials directly responsible for water delivery within the Mountain Counties Area anticipate a reliance on state "Area of Origin and Watershed Protection" law for both meeting projected growth within their respective areas as well as improving water supply reliability to existing users. These statutes provide for the reservation of water supplies for counties in which the water originates when a state water right filing is assigned for use elsewhere, as well as setting aside water for future development in the area (see Chapter 2 for more information). Typically, however, the upland areas have not had the population and capital base to contract with SWP or CVP, nor has the SWP or CVP had adequate supplies of unallocated water to meet the needs of upstream communities. A complicating factor is, in cases where Project water may be available, the potential service areas in the foothills are both higher in elevation and geographically distant from Project facilities, thus curtailing construction of expensive distribution systems.

Many small water systems in the foothills and mountains of California have historically tapped surface water or springs that required minimal treatment in order to meet both state and federal standards; other small systems rely upon delivery from open ditches. These systems, must maintain reliable filtration and

disinfection facilities. When such treatment upgrades are infeasible, EPA and state health regulations are instead requiring customers to receive bottled drinking water. Common to the ditch delivery systems within the Mountain Counties region is the tendency to have large conveyance losses. Repairs on some systems have been opposed by various groups and landowners who argue the loss of the aesthetics of the flowing canal, loss of vegetation and wildlife created by leakage and percolation and who see the water saved as growth inducing.

After the 1997 floods, a landslide destroyed a 30-foot section of Georgetown's canal, which supplies water to 9,000 customers in six towns in rural El Dorado County. Nearby, El Dorado Irrigation District also lost use of it flume from the forebay on the American River due to a separate landslide.

The Mountain Counties areas are concerned with forest fires and the damage they cause to the watersheds and the wooden infrastructure associated with the ditch systems. Every year, numerous forest fires occur in the Sierra Nevada and expose the watershed to erosion and change runoff timing. Sediment can, obstruct water flow in open ditches, reduce reservoir capacity, add nutrient loading, diminish water quality and cause excessive algae growth. Fires have damaged components to the ditch systems including diversion structures and flume sections. As a result communities have been left without water for extended periods of time.

Water supply managers in the area are concerned about Federal and State designation of Wild and Scenic streams. Wild and Scenic status precludes water resources development. Environmental interests are concerned about preserving the few undeveloped streams or sections of streams remaining in the area. Federal statutes prohibit federal agencies from constructing, authorizing, or funding water resources projects having a direct and adverse effect on the values for which the river was designated. The state wild and scenic law prohibits construction of any dam, reservoir, diversion, or other water impoundment in specific regions. Diversions needed to supply domestic water to residents of counties through which the river flows may, in some cases, be authorized.

Like surface water, groundwater in this region is generally of good quality, but it may be contaminated by naturally occurring radon, uranium, and sulfide mineral deposits containing heavy metals. In particular,

radon contamination is associated with granite, such as the granite batholith of the Sierra Nevada. Meeting state secondary standards for both iron and magnesium can also be difficult. Also, because of the lack of community wastewater systems, individual septic tanks are prevalent in this region, potentially adversely affecting groundwater quality.

#### **Accomplishments**

In 1997. Sacramento area interest released the Draft Recommendations for the water Forum Agreement. This stakeholder group is pursuing two objectives: (1) provide a reliable water supply for the region through 2030 and (2) reserve the fishery, wildlife recreation, and aesthetic values of the Lower American River. The proposed draft solution includes an integrated package of seven actions. Generally, foothill water interests would increase their diversions from the American River in average and wet years and decrease those diversions in drier and driest years. Placer County Water Agency would be providing excess water from non-American River sources to many of the participating water agencies during drier and

In 1996, the University of California released its "Sierra Nevada Ecosystem Study," as apart of a project by the same name. The report is the result of a three year congressionally mandated study of the entire Sierra Nevada, with a primary emphasis on gathering and analyzing data to assist Congress and other decision makers in future management of the mountain range. The project goal is to maintain the health and sustainability of the ecosystem while providing resources to meet human needs. The study states that, "excluding the hard-to-quantify public good value of flood control and reservoir-based recreation, the hydroelectric generating, irrigation and urban use values of water are far greater than the combined value of all other commodities produced in the Sierra Nevada." The report estimates the value of water at 60 percent of all commodities produced in the foothills and mountains of the Sierra Nevada. This commodity-based view of water leads to some of the study's related conclusions that, "increased concern about the ecological impacts of diversions as well as the social decisions about who should bear the financial burdens of plans to reduce, or at least stop the growth of, these impacts requires a greater understanding of how diversions, economic benefits, and ecological impacts are linked."

driest years to help make up the decreased American River diversions in those years. PCWA's participation in many of these specific agreements is dependent upon State Water Resources Control Board approval for changes to conditions of its existing water rights.

## **Relationship to Other Regions**

Much of the State's developed water supply originates in this upland area, including several CVP and SWP reservoirs and the local facilities of Yuba county Water Agency, East Bay Municipal Utility District, the city of San Francisco, Modesto and Turlock Irrigation Districts, and Merced Irrigation District.

## **Looking to the Future**

The Mountain Counties Area has limited water supply options compared with many of the other hydrologic regions because of its topography, geology, small population, ability to pay, and the fact that most water originating in the area is used in downstream areas. However, most water agencies are actively pursuing a wide variety of supply augmentation and demand reduction actions to secure water needed in the future. For example, El Dorado Irrigation District is investigating construction of the 31,000 acre-feet Alder Reservoir to provide drought storage, enhanced environmental flows, and hydropower generation benefits. In addition to its ongoing water conservation and water recycling programs, the District is planning on lining a 2.5-mile ditch system to save an estimated 1,300 acre-feet per year.

## **Regional Planning**

The Mountain Counties Water Resources Association assists water agencies and local governments in coordinating water resource matters important to the region. The Association also interfaces with applicable state officials and departments on water resource matters.

Some agencies are looking for new supplies from expansion of existing storage, re-operation of existing hydroelectric storage, or construction of new storage. For example, Lyons Reservoir, located in the Tuolumne Utilities District (TUD), is a 5,800 acre-foot joint use facility, supplying both hydroelectric power and consumptive water storage. TUD is considering the expansion of Lyons Reservoir to 50,000 acre-feet. While large quantities of groundwater are not generally available in the Sierra-Cascade Mountain Area, a number of local agencies are implementing groundwater management strategies to help ensure the reliability of local groundwater supplies.

Several local agencies and governments are developing recycled water projects. A few examples are:

- El Dorado Irrigation District is investigating construction of up to 5,000 acre-feet of seasonal storage to more efficiently use recycled water in the District. The storage would allow for meeting recycled water demands, without supplemental water or shortages through 2025.
- The city of Auburn is developing a proposal to sell up to 5,000 acre-feet of recycled water to agricultural users by 2020. (The water is expected to be delivered near Lincoln, on the valley floor. This option is included in the Sacramento River Region management plan.)
- The city of Angels Camp, in Calaveras County, is developing plans to expand its reclaimed water deliveries by 300 acre-feet to agricultural, environmental, and landscape users by 2020.
- Two other projects in Calaveras County will deliver 470 acre-feet for landscape irrigation.
- Groveland Community Services District, in southern Tuolumne County anticipates 425 acre-feet being made available to agricultural customers by 2020.

• The Sierra Conservation Center, in Tuolumne County, is planning a project to deliver almost 300 acre-feet for agriculture and landscape irrigation by 2020.

Urban growth, an average of 1800 new home each year, in the city of Lincoln has created a need for new drinking water in an area that has been served agricultural water since 1926. An association comprised of

the Nevada Irrigation District, Placer County Water Agency, and the city of Lincoln is investigating how to accommodate this change in water use to eliminate the need to find additional water supplies or continue groundwater pumping to meet the domestic water needs.

In February 2000, South Sutter Water District, Camp Far West Irrigation District, and the California Department of Water Resources entered an agreement to meet the State Water Resource Control Boards water quality objectives (Phase 8 of the Water Quality Control Plan for the San Francisco/Sacramento-San Joaquin Delta Estuary). In exchange for up to 4,400 acre-feet of water from Camp Far West Reservoir in each dry and critical year, DWR agreed to assume all responsibility for all Bear River water rights holders' obligations under Phase 8. In addition, South Sutter Water District is implementing its Conveyance Canal

#### SSWD's Conveyance Canal Improvement Plan

- Increase the flexibility, timing, and reliability of surface water supplies.
- Replenish groundwater supplies for extraction in drier years.
- Recharge the groundwater basin to reduce the effect of declining groundwater levels.
- Provide the ability to meet additional water needs (including Bay Delta Authority environmental objectives) outside of SSWD.
- Replace older conveyance structures with advanced control technology.
- Enhance SSWD's conjunctive water management activities.
- Reduce the need for cropping changes during drier water years.
- Increase power generation and decrease power use for pumping.
- Increase water use efficiency by installing state-of-the-art water control and measurement structures.

Improvement Plan to increase the system conveyance capacity. The additional water for conveyance will be obtained from increases in diversion of stored water and water that is spilled from Camp Far West Reservoir.

## Water Portfolios for Water Years 1998, 2000, and 2001

The following tables present actual information about the water supplies and uses for the Mountain Counties hydrologic region. Water year 1998 was a wet year for this region, with annual precipitation at 130 percent of normal, while the statewide annual precipitation was 170 percent of average. Year 2000 represents nearly normal hydrologic conditions with annual precipitation at 90 percent of average for the Mountain Counties region, and year 2001 reflected dryer water year conditions with annual precipitation at 55 percent of average. For comparison, statewide average precipitation in year 2001 was 75 percent of normal. Table 12-1 provides more detailed information about the total water supplies available to this region for these three specific years from precipitation, imports and groundwater, and also summarizes the uses of all of the water supplies. The three Water portfolio tables included in Table 12-2 and companion Water Portfolio flow diagrams (Figures 12-2, 12-3 and 12-4) provided more detailed information about how the available water supplies are distributed and used throughout this region.

A more detailed tabulation of the portion of the total available water that is dedicated to urban, agricultural and environmental purposes is presented in Table 3. Table 3 also provides detailed information about the sources of the developed water supplies, which are primarily from surface water systems and include a large percentage of water imports from other regions.

#### **Sources of Information**

- Water Quality Control Plan, Regional Water Quality Control Board
- Watershed Management Initiative Chapter, Regional Water Quality Control Board
- 2002 California 305(b) Report on Water Quality, State Water Resources Control Board
- Bulletin 118 (Draft), California's Groundwater, Update 2003, Department of Water Resources
- Nonpoint Source Program Strategy and Implementation Plan, 1998-2013, State Water Resources Control Board, California Coastal Commission, January 2000
- Strategic Plan, State Water Resources Control Board, Regional Water Quality Control Boards, November 15, 2001

Figure 13-1

Mountain Counties of California

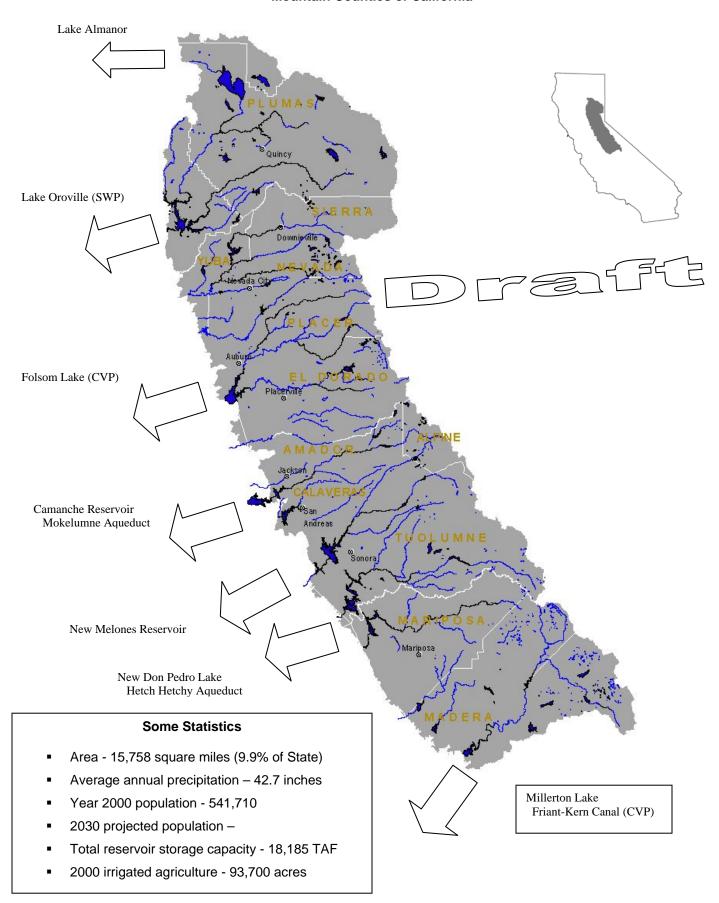



Table 13-1

Mountain Counties of California Water Balance Summary – TAF

Water Entering the Region – Water Leaving the Region = Storage Changes in Region

| dry)       |
|------------|
|            |
| 15         |
| 0          |
| 0          |
| 0          |
| <b>4</b> 5 |
|            |
| 3          |
|            |
| 0          |
| )6         |
| 36         |
| 78         |
|            |
| 31         |
|            |
|            |
| 14         |
|            |
|            |
|            |
| 21         |
| 8          |
| 9          |
|            |
| •          |
|            |
| (          |

| Applied Water * (compare with Consumptive Use)                                                                                                                                                                            | 397 | 464 | 447 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|
| * Definition - Consumptive use is the amount of applied water used and no longer available as a source of supply. Applied water is greater than consumptive use because it includes consumptive use, reuse, and outflows. |     |     |     |

<sup>\*\*</sup>Footnote for change in Groundwater Storage

Change in Groundwater Storage is based upon best available information. Basins in the north part of the State (North Coast, San Francisco, Sacramento River and North Lahontan Regions and parts of Central Coast and San Joaquin River Regions) have been modeled – spring 1997 to spring 1998 for the 1998 water year and spring 1999 to spring 2000 for the 2000 water year. All other regions and year 2001 were calculated using the following equation:

#### GW change in storage =

intentional recharge + deep percolation of applied water + conveyance deep percolation - withdrawals

This equation does not include the unknown factors such as natural recharge and subsurface inflow and outflow.

Table 13-2
Water Portfolios for Water Years 1998, 2000 and 2001

| Category<br>Inputs:                                                                                            | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mou<br>Water<br>Portfolio                 | untain Cour<br>Applied<br>Water                                                       | Net<br>Water | TAF)<br>Depletion                                                                                                                                                     | Water<br>Portfolio                      | Intain Coun<br>Applied<br>Water                                              | nties 2000 (1<br>Net<br>Water | TAF)<br>Depletion                                                                                                                                                           | Mou<br>Water<br>Portfolio       | ntain Coun<br>Applied<br>Water                                                            | Net<br>Water  | TAF)<br>Depletion                                                                                                                                                                                                | Data<br>Detail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                                              | Colorado River Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FULUUIU                                   | - vvaler                                                                              | vvalei       | 1                                                                                                                                                                     | FUILIUIU                                | - vvalei                                                                     | vvalei                        | 1                                                                                                                                                                           | POLITORIO                       | - vvalei                                                                                  | vvalei        | 1                                                                                                                                                                                                                | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                                                                                              | Total Desalination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3                                                                                                              | Water from Refineries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4a                                                                                                             | Inflow From Oregon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Inflow From Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5                                                                                                              | Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55,205.7                                  |                                                                                       |              |                                                                                                                                                                       | 38,412.2                                |                                                                              |                               |                                                                                                                                                                             | 23,444.5                        |                                                                                           |               |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6a                                                                                                             | Runoff - Natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                       |                                                                                       |              |                                                                                                                                                                       | N/A                                     |                                                                              |                               |                                                                                                                                                                             | N/A                             |                                                                                           |               |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| b                                                                                                              | Runoff - Incidental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A                                |                                                                                       |              |                                                                                                                                                                       | N/A<br>N/A                              |                                                                              |                               |                                                                                                                                                                             | N/A<br>N/A                      |                                                                                           |               |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 8                                                                                                              | Total Groundwater Natural Recharge Groundwater Subsurface Inflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A                                |                                                                                       |              |                                                                                                                                                                       | N/A<br>N/A                              |                                                                              |                               |                                                                                                                                                                             | N/A<br>N/A                      |                                                                                           |               |                                                                                                                                                                                                                  | REGION<br>REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 9                                                                                                              | Local Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN/A                                      | 1,954.0                                                                               |              |                                                                                                                                                                       | IN/A                                    | 1,516.4                                                                      |                               |                                                                                                                                                                             | IN/A                            | 1,062.9                                                                                   |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 10                                                                                                             | Local Imports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 9.7                                                                                   |              |                                                                                                                                                                       |                                         | 10.9                                                                         |                               |                                                                                                                                                                             |                                 | 8.5                                                                                       |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11a                                                                                                            | Central Valley Project :: Base Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 5.5                                                                                   |              |                                                                                                                                                                       |                                         | 6.1                                                                          |                               |                                                                                                                                                                             |                                 | 7.0                                                                                       |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Central Valley Project :: Project Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 20.2                                                                                  |              |                                                                                                                                                                       |                                         | 20.2                                                                         |                               |                                                                                                                                                                             |                                 | 11,4                                                                                      |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 12                                                                                                             | Other Federal Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                           | 1.6                                                                                   |              |                                                                                                                                                                       |                                         | 1.6                                                                          |                               |                                                                                                                                                                             |                                 | 1.6                                                                                       |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13                                                                                                             | State Water Project Deliveries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | - \ '                                                                                     | <b></b>       |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 14a                                                                                                            | Water Transfers - Regional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               | -                                                                                                                                                                           |                                 | - \                                                                                       | 1             |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Water Transfers - Imported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               | $\vdash$                                                                                                                                                                    |                                 | - \                                                                                       | $\vdash$      |                                                                                                                                                                                                                  | PSA/DAU<br>REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15a<br>b                                                                                                       | Releases for Delta Outflow - CVP Releases for Delta Outflow - SWP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            | $\wedge$                      | $\overline{}$                                                                                                                                                               | $\overline{}$                   | -                                                                                         | $\overline{}$ |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C                                                                                                              | Instream Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 1,569.5                                                                               |              |                                                                                                                                                                       |                                         | 1,563.0                                                                      | 11/                           | $\leftarrow$                                                                                                                                                                |                                 | 1,450.6                                                                                   | +             |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16                                                                                                             | Environmental Water Account Releases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | 1,000.0                                                                      | 11                            |                                                                                                                                                                             | $\overline{}$                   | -                                                                                         | $\overline{}$ |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 17a                                                                                                            | Conveyance Return Flows to Developed Supply - Urbar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                         | -                                                                                     |              |                                                                                                                                                                       |                                         | \                                                                            | 11                            |                                                                                                                                                                             | $\square$                       | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Conveyance Return Flows to Developed Supply - Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 23.0                                                                                  |              |                                                                                                                                                                       |                                         | -//                                                                          |                               | $\triangle$                                                                                                                                                                 |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С                                                                                                              | Conveyance Return Flows to Developed Supply - Mana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ged Wetland                               | -                                                                                     |              |                                                                                                                                                                       |                                         | -)                                                                           |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18a                                                                                                            | Conveyance Seepage - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | -                                                                                     |              |                                                                                                                                                                       | $\Box$                                  | 11                                                                           | 17                            |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Conveyance Seepage - Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 3.6                                                                                   |              |                                                                                                                                                                       | $\overline{\lambda}$                    | 4.7                                                                          | $\leftarrow +$                |                                                                                                                                                                             | _                               | 3.7                                                                                       |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| C 100                                                                                                          | Conveyance Seepage - Managed Wetlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | - 1.0                                                                                 | $\vdash$     | <del>(                                    </del>                                                                                                                      | $\overline{}$                           | 12                                                                           | $\vdash$                      |                                                                                                                                                                             |                                 | - 1.0                                                                                     |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 19a<br>b                                                                                                       | Recycled Water - Agriculture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | 1.2                                                                                   | $\vdash$     | 1                                                                                                                                                                     | +++                                     | 1.2                                                                          | $\sim$                        | <b>-</b>                                                                                                                                                                    |                                 | 1.2                                                                                       |               | -                                                                                                                                                                                                                | PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C                                                                                                              | Recycled Water - Urban Recycled Water - Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | -                                                                                     | <b>├</b>     | $\vdash$                                                                                                                                                              | ++-                                     | <del>                                     </del>                             | <u> </u>                      |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 20a                                                                                                            | Return Flow to Developed Supply - Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 56.0                                                                                  |              | $\land$                                                                                                                                                               | $\vdash$                                | \\-                                                                          |                               |                                                                                                                                                                             |                                 |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Return Flow to Developed Supply - Wetlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С                                                                                                              | Return Flow to Developed Supply - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21a                                                                                                            | Deep Percolation of Applied Water - Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                           | 6.0                                                                                   |              |                                                                                                                                                                       |                                         | 6.1                                                                          |                               |                                                                                                                                                                             |                                 | 4.5                                                                                       |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b                                                                                                              | Deep Percolation of Applied Water - Wetlands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| С                                                                                                              | Deep Percolation of Applied Water - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 19.2                                                                                  |              |                                                                                                                                                                       |                                         | 17.6                                                                         |                               |                                                                                                                                                                             |                                 | 18.3                                                                                      |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 22a                                                                                                            | Reuse of Return Flows within Region - Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \\\\^                                     | 7.7                                                                                   |              |                                                                                                                                                                       |                                         | 12.0                                                                         |                               |                                                                                                                                                                             |                                 | 6.9                                                                                       |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| b 242                                                                                                          | Reuse of Return Flows within Region - Wetlands, Instre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | arn, vv&S                                 | 4,917.6                                                                               |              |                                                                                                                                                                       |                                         | 3,330.3                                                                      |                               | <b>-</b>                                                                                                                                                                    |                                 | 1,783.0                                                                                   |               | -                                                                                                                                                                                                                | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 24a<br>b                                                                                                       | Return Flow for Delta Outflow - Ag  Return Flow for Delta Outflow - Wetlands, Instream, W&                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S                                         | 3,403.8                                                                               |              |                                                                                                                                                                       |                                         | 2,331.4                                                                      |                               |                                                                                                                                                                             |                                 | 1,636.4                                                                                   |               |                                                                                                                                                                                                                  | PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| C                                                                                                              | Return Flow for Delta Outflow - Wetlands, Instream, We Return Flow for Delta Outflow - Urban Wastewater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 3,403.8                                                                               |              |                                                                                                                                                                       |                                         | 2,331.4                                                                      |                               |                                                                                                                                                                             |                                 | 1,030.4                                                                                   |               |                                                                                                                                                                                                                  | PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 25                                                                                                             | Direct Diversions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                       |                                                                                       |              |                                                                                                                                                                       | N/A                                     |                                                                              |                               |                                                                                                                                                                             | N/A                             |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26                                                                                                             | Surface Water in Storage - Beg of Yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11,595.4                                  |                                                                                       |              |                                                                                                                                                                       | 12,504.6                                |                                                                              |                               |                                                                                                                                                                             | 11,702.6                        |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 27                                                                                                             | Groundwater Extractions - Banked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                         |                                                                                       |              |                                                                                                                                                                       | -                                       |                                                                              |                               |                                                                                                                                                                             | -                               |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 28                                                                                                             | Groundwater Extractions - Adjudicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                         |                                                                                       |              |                                                                                                                                                                       | -                                       |                                                                              |                               |                                                                                                                                                                             | -                               |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 29                                                                                                             | Groundwater Extractions - Unadjudicated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.5                                      |                                                                                       |              |                                                                                                                                                                       | 61.2                                    |                                                                              |                               |                                                                                                                                                                             | 73.9                            |                                                                                           |               |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                | In Thousand Acre-feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | 1                                                                                     |              |                                                                                                                                                                       |                                         |                                                                              |                               |                                                                                                                                                                             |                                 |                                                                                           |               | 1                                                                                                                                                                                                                | DECION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23                                                                                                             | Groundwater Subsurface Outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 44.045.4                                |                                                                                       |              |                                                                                                                                                                       | 44 700 0                                |                                                                              |                               |                                                                                                                                                                             | - 0.000.4                       |                                                                                           |               |                                                                                                                                                                                                                  | REGION<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 30                                                                                                             | Surface Water Storage - End of Yr Groundwater Recharge-Contract Banking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14,015.1                                  | -                                                                                     |              | <b>-</b>                                                                                                                                                              | 11,702.6                                | -                                                                            |                               | <b>-</b>                                                                                                                                                                    | 8,982.1                         | -                                                                                         |               | <b>—</b>                                                                                                                                                                                                         | PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 32                                                                                                             | Groundwater Recharge-Adjudicated Basins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 |                                                                                           |               |                                                                                                                                                                                                                  | PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 33                                                                                                             | Groundwater Recharge-Unadjudicated Basins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | -                                                                                     |              |                                                                                                                                                                       |                                         | -                                                                            |                               |                                                                                                                                                                             |                                 |                                                                                           |               |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34a                                                                                                            | Evaporation and Evapotranspiration from Native Vegeta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ition                                     |                                                                                       |              | N/A                                                                                                                                                                   |                                         |                                                                              |                               |                                                                                                                                                                             |                                 | -                                                                                         |               |                                                                                                                                                                                                                  | REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| b                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                                                                                       |              | 14/73                                                                                                                                                                 |                                         |                                                                              |                               | N/A                                                                                                                                                                         |                                 |                                                                                           |               | N/A                                                                                                                                                                                                              | REGION<br>REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| L D                                                                                                            | Evaporation and Evapotranspiration from Unirrigated Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                         |                                                                                       |              | N/A                                                                                                                                                                   |                                         |                                                                              |                               | N/A<br>N/A                                                                                                                                                                  |                                 | -                                                                                         |               | N/A                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35a                                                                                                            | Evaporation from Lakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )                                         |                                                                                       |              | N/A<br>92.4                                                                                                                                                           |                                         |                                                                              |                               | N/A<br>107.2                                                                                                                                                                |                                 | -                                                                                         |               | N/A<br>98.5                                                                                                                                                                                                      | REGION<br>REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35a<br>b                                                                                                       | Evaporation from Lakes Evaporation from Reservoirs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           |                                                                                       |              | N/A                                                                                                                                                                   |                                         |                                                                              |                               | N/A                                                                                                                                                                         |                                 |                                                                                           |               | N/A                                                                                                                                                                                                              | REGION<br>REGION<br>REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35a<br>b<br>36                                                                                                 | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 75.2                                                                                  | 247.0        | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 51.9                                                                         | 241.2                         | N/A<br>107.2<br>711.0                                                                                                                                                       |                                 | 70.8                                                                                      | 20.1.5        | N/A<br>98.5<br>646.4                                                                                                                                                                                             | REGION<br>REGION<br>REGION<br>REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 35a<br>b<br>36<br>37                                                                                           | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                         | 261.3                                                                                 | 247.6        | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7                                                                        | 311.6                         | N/A<br>107.2<br>711.0                                                                                                                                                       |                                 | 70.8<br>305.9                                                                             | 294.5         | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35a<br>b<br>36<br>37<br>38                                                                                     | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                         | 261.3                                                                                 | 247.6        | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7                                                                        | 311.6                         | N/A<br>107.2<br>711.0                                                                                                                                                       |                                 | 70.8<br>305.9                                                                             | 294.5         | N/A<br>98.5<br>646.4                                                                                                                                                                                             | REGION<br>REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 35a<br>b<br>36<br>37                                                                                           | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           | 261.3<br>-<br>29.4                                                                    |              | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7                                                                        |                               | N/A<br>107.2<br>711.0                                                                                                                                                       |                                 | 70.8<br>305.9<br>-<br>30.0                                                                |               | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35a<br>b<br>36<br>37<br>38<br>39a                                                                              | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                           | 261.3                                                                                 |              | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7<br>-<br>28.9                                                           |                               | N/A<br>107.2<br>711.0                                                                                                                                                       |                                 | 70.8<br>305.9                                                                             |               | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35a<br>b<br>36<br>37<br>38<br>39a<br>b<br>c                                                                    | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3                                             |              | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6                                    |                               | N/A<br>107.2<br>711.0                                                                                                                                                       | <u> </u>                        | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8                                         |               | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35a<br>b<br>36<br>37<br>38<br>39a<br>b<br>c<br>d                                                               | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Remercial Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8                                     |              | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5                            |                               | N/A<br>107.2<br>711.0                                                                                                                                                       | <b>)</b>                        | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2                                 |               | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35a<br>b<br>36<br>37<br>38<br>39a<br>b<br>c<br>d<br>40<br>41                                                   | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Industrial Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3                             |              | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3                    |                               | N/A<br>107.2<br>711.0                                                                                                                                                       | <u> </u>                        | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4                         |               | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35a b 36 37 38 39a b c d 40 41 42                                                                              | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Industrial Use Urban Industrial Use Urban Lage Landscape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                           | 261.3<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3                          |              | N/A<br>92.4<br>630.2                                                                                                                                                  |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5                            |                               | N/A<br>107.2<br>711.0                                                                                                                                                       | <b>)</b>                        | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6                 |               | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 35a b 36 37 38 39a b c d 40 41 42 43                                                                           | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wulti-family - Exterior Urban Industrial Use Urban Large Landscape Urban Large Landscape Urban Energy Production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3                     | -            | N/A<br>92.4<br>630.2<br>191.5                                                                                                                                         |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0            |                               | N/A<br>107.2<br>711.0<br>311.6                                                                                                                                              | <b>)</b>                        | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6                 | -             | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35a b 36 37 38 39a b c c d 40 41 42 43 44                                                                      | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5                                                                                                                                         |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3                    | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6                                                                                                                                              | <i>\</i>                        | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45                                                                     | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5                                                                                                                                         |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6                                                                                                                                              | <b>&gt;</b>                     | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 35a b 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                  | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5                                                                                                                                         |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0            | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6                                                                                                                                              |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45                                                                     | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Large Landscape Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>-<br>2,133.9<br>176.9                                                                                                | A                                       | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6                                                                                                                                              |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6                                                                                                                                                                                    | REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45 66 47a b c                                                          | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Loommercial Use Urban Industrial Use Urban Lorge Landscape Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Managed Wetlane Evapotranspiration of Applied Water - Managed Wetlane Evapotranspiration of Applied Water - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ds                                        | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5                                                                                                                                         |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6                                                                                                                                              |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>-<br>313.3<br>205.9                                                                                                                                             | REGION<br>REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c 48                                                     | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Managed Wetlan Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration form Urban Wastev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ds                                        | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>1769.9                                                                                                         | A                                       | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>54.5                                                                                   |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>-<br>1,323.1<br>-<br>313.3<br>205.9<br>-                                                                                                                                   | REGION<br>REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c 48 49                                                    | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Managed Wetlan Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration from Urban Wastev Retturn Flows Evaporation and Evapotranspiration - Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ds                                        | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>2,133.9<br>176.9                                                                                                     |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>1,025.6<br>248.6                                                                                                          |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9                                                                                                                                                  | REGION<br>REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c 48 49 49 50                                          | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wulti-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Managed Wetlane Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Water Evapotranspiration of Applied Water - Outpan Waster Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ds vater                                  | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9                                                                                                          | 50.7                                    | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>1,025.6<br>248.6<br>-<br>54.5<br>7.8                                                                                      | 52.7                            | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>                                                                                                                                                                                | REGION REGION REGION REGION REGION REGION REGION PSA/DAU REGION PSA/DAU REGION PSA/DAU REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b 6 49 50 51a                                                | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Experior Sidential Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration from Urban Wastev Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ds vater                                  | 261.3<br>-<br>29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-<br>1,569.5     | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>2,133.9<br>176.9                                                                                                     |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>1,025.6<br>248.6<br>248.6<br>-<br>7.8                                                                                     |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>-<br>1,323.1<br>-<br>313.3<br>205.9<br>-<br>6.0                                                                                                                            | REGION<br>REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c 48 49 50 51a                                           | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Managed Wetlan Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Water Evapotranspiration of Applied Water - Water Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Water Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Water Evapotranspiration of Applied Water - Water Evapotranspiration of Applied Water - Orban Waster Evapotranspiration of Applied Water - Orban Waster Evapotranspiration of Applied Water - App | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9                                                                                                          |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>7.8<br>9.6<br>23.9                                                                     |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>                                                                                                                                                                                | REGION<br>REGION<br>REGION<br>REGION<br>REGION<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>PSA/DAU<br>REGION<br>PSA/DAU<br>REGION<br>PSA/DAU<br>REGION<br>PSA/DAU<br>REGION<br>PSA/DAU<br>REGION<br>PSA/DAU<br>PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c 51a b c c                                              | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Urban Lower Commercial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Wild & Scenic Rivers Use Evaportanspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Applied Water - Urban Evapotranspiration of Applied Water - Applied Wa | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>2,133.9<br>176.9                                                                                                     |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>1,305.8<br>1,025.6<br>248.6<br>248.6<br>248.6<br>248.6<br>248.6<br>248.6                                                                  |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9<br>-<br>6.0<br>9.6<br>22.7                                                                                                                       | REGION REGION REGION REGION REGION REGION REGION PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 35a b 36 37 38 39a b c d 40 41 42 43 44 45 66 47a b c 48 49 50 c d d d d                                       | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wulti-family - Exterior Urban Commercial Use Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Required Delta Outflow Required Delta Outflow Side Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Wastev Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Urba Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation and Evapotranspiration - Man Conveyance Loss to Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9                                                                                                          |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>1,025.6<br>248.6<br>54.5<br>-<br>7.8<br>9.6<br>23.9                                                                       |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | 1,323.1<br>1,323.1<br>205.9<br>6.0<br>9.6<br>22.7                                                                                                                                                                | REGION REGION REGION REGION REGION REGION REGION PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c 48 49 50 51a b c c d d d d d d d d d d d d d d d d d | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wilti-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Wanaged Wetlan Evapotranspiration of Applied Water - Urban Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation - Man Conveyance Evaporation - Man Conveyance Evapo | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9<br>10.9                                                                                                  |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>54.5<br>-<br>7.8<br>9.6<br>23.9                                                             |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>                                                                                                                                                                                | REGION REGION REGION REGION REGION REGION REGION PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35a b 36 37 38 39a b c d 40 41 41 42 43 44 45 46 47a b c d 49 50 51a b c d 52a b                               | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Experimental Use Urban Large Landscape Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration from Urban Wastev Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Urba Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation and Evapotranspiration - Man Conveyance Loss to Mexico Return Flows to Salt Sink - Ag Return Flows to Salt Sink - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9                                                                                                          |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>1,025.6<br>248.6<br>54.5<br>-<br>7.8<br>9.6<br>23.9                                                                       |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | 1,323.1<br>1,323.1<br>205.9<br>6.0<br>9.6<br>22.7                                                                                                                                                                | REGION REGION REGION REGION REGION REGION REGION PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c 48 49 50 51a b c c d d d d d d d d d d d d d d d d d | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wilti-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Wanaged Wetlan Evapotranspiration of Applied Water - Urban Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation - Man Conveyance Evaporation - Man Conveyance Evapo | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9<br>10.7<br>12.4<br>67.2                                                                                  |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>248.6<br>-<br>23.9<br>-<br>77.6                                                             |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | 1,323.1<br>1,323.1<br>313.3<br>205.9<br>6.0<br>9.6<br>22.7<br>-1<br>104.2                                                                                                                                        | REGION REGION REGION REGION REGION REGION REGION REGION PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c 48 49 50 51a b c c d 52a b c c                       | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wulti-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Wastew Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation and Evapotranspiration - Man Conveyance Loss to Mexico Return Flows to Salt Sink - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9<br>58.3<br>60<br>10.7<br>12.4<br>67.2                                                                    |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>-<br>7.6<br>71.6                                                                  |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>-<br>1,323.1<br>-<br>313.3<br>205.9<br>56.7<br>-<br>-<br>6.0<br>9.6<br>22.7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | REGION REGION REGION REGION REGION REGION REGION PSA/DAU REGION PSA/DAU PSA/DAU REGION PSA/DAU PSA/DAU PSA/DAU REGION PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU REGION PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU PSA/DAU REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c 48 49 50 51a b c d d 52a b c 53 54a                    | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Wilti-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Wanaged Wetlan Evapotranspiration of Applied Water - Urban Conveyance Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation and Evapotranspiration - Man Conveyance Loss to Mexico Return Flows to Salt Sink - Urban Return Flows to Salt Sink - Wetlands Remaining Natural Runoff - Flows to Salt Sink Outflow to Nevada Outflow to Oregon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ds vater 43.4                             | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>-<br>2,133.9<br>176.9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                         | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9<br>-<br>6.0<br>9.6<br>22.7<br>-<br>104.2<br>74.2<br>-<br>0.0                                                                                     | REGION REGION REGION REGION REGION REGION REGION PSA/DAU REGION REGION REGION REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c d 51a b c d 52a b c d 53 54a b c c                     | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Large Landscape Urban Large Landscape Urban Energy Production Instream Flow Required Delta Outflow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Managed Wetlan Evapotranspiration of Applied Water - Urban Wastew Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Urba Conveyance Evaporation and Evapotranspiration - Man Conveyance Evaporation and Evapotranspiration - Man Conveyance Loss to Mexico Return Flows to Salt Sink - Urban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ds vater 43.4 un aged Wetlan              | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>1,269.9<br>2,133.9<br>176.9<br>58.3<br>60<br>10.7<br>12.4<br>67.2                                                                    | 50.7                                    | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | 1,305 8<br>1,225 6<br>248.6<br>23.9<br>                                                                                                                                     | 52.7                            | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>-<br>1,323.1<br>-<br>313.3<br>205.9<br>56.7<br>-<br>-<br>6.0<br>9.6<br>22.7<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | REGION REGION REGION REGION REGION REGION REGION REGION PSA/DAU PSA/DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c 48 49 49 50 51a b c c d 52a b c c 53 54a b c c 555   | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Wanaged Wetlane Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Wanaged Wetlane Evapotranspiration of Applied Water - Wanaged Wetlane Evapotranspiration of Applied Water - Compevance Use Water Return Flows Evaporation and Evapotranspiration - Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Man Return Flows to Salt Sink - Urban Return Flows to Salt Sink - Wetlands Remaining Natural Runoff - Flows to Salt Sink Outflow to Nevada Outflow to Nevada Outflow to Mexico                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.4 in aged Wellan                       | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>-<br>2,133.9<br>176.9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50.7                                    | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 52.7                            | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9<br>-<br>6.0<br>9.6<br>22.7<br>-<br>104.2<br>74.2<br>-<br>0.0                                                                                     | REGION REGION REGION REGION REGION REGION REGION REGION PSA/DAU REGION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c d 55 53 54a b c c 55 56                              | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration of The Order O | ds valer 43.4 an aged Wetlan 0.0 4.373.6  | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>-<br>2,133.9<br>176.9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50.7                                    | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 52.7<br>0.0<br>2,605.6          | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9<br>-<br>6.0<br>9.6<br>22.7<br>-<br>104.2<br>74.2<br>-<br>0.0                                                                                     | REGION REGION REGION REGION REGION REGION REGION REGION PSA/DAU PSA/DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35a b b 36 37 38 39a b c d 40 41 42 43 43 44 45 46 47a b c c 48 49 50 51a b c d 52a b c c 55 56 56             | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Commercial Use Urban Industrial Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Managed Wetlan Evapotranspiration of Applied Water - Managed Wetlan Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Urban Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration or Ag Urban Waste Water Produced Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Ag Conveyance Evaporation and Evapotranspiration - Man Conveyance Loss to Mexico Return Flows to Salt Sink - Ag Return Flows to Salt Sink - Ng Return Flows to Salt Sink - Wetlands Remaining Natural Runoff - Flows to Salt Sink Outflow to Nevada Outflow to Mexico Regional Exports Regional Exports Regional Exports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.4 in aged Wetlan 0.0 0.0 4.373.6 -12.5 | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>-<br>2,133.9<br>176.9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50.7<br>50.7<br>0.0<br>3,744.1<br>-15.1 | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 52.7<br>0.0<br>2.605.6<br>-78.2 | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9<br>-<br>6.0<br>9.6<br>22.7<br>-<br>104.2<br>74.2<br>-<br>0.0                                                                                     | REGION REGION REGION REGION REGION REGION REGION REGION PSA/DAU REGION PSA/DAU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35a b b 36 37 38 39a b c d 40 41 42 43 44 45 46 47a b c c d 55 53 54a b c c 55 56                              | Evaporation from Lakes Evaporation from Reservoirs Ag Effective Precipitation on Irrigated Lands Agricultural Use Wetlands Use Urban Residential Use - Single Family - Interior Urban Residential Use - Single Family - Exterior Urban Residential Use - Single Family - Exterior Urban Residential Use - Multi-family - Interior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use - Multi-family - Exterior Urban Residential Use Urban Industrial Use Urban Industrial Use Urban Energy Production Instream Flow Required Delta Outflow Wild & Scenic Rivers Use Evapotranspiration of Applied Water - Ag Evapotranspiration of Applied Water - Urban Evaporation and Evapotranspiration of The Order O | ds valer 43.4 an aged Wetlan 0.0 4.373.6  | 261.3<br>-29.4<br>60.4<br>10.2<br>3.3<br>10.8<br>10.3<br>11.3<br>-1,569.5<br>-6,751.9 | 1,269.9      | N/A<br>92.4<br>630.2<br>191.5<br>-<br>1,269.9<br>-<br>2,133.9<br>176.9<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 50.7                                    | 329.7<br>-<br>28.9<br>60.1<br>10.1<br>3.6<br>10.5<br>10.3<br>11.0<br>1,563.0 | 1,305.8                       | N/A<br>107.2<br>711.0<br>311.6<br>-<br>-<br>1,305.8<br>-<br>1,025.6<br>248.6<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 52.7<br>0.0<br>2,605.6          | 70.8<br>305.9<br>-<br>30.0<br>62.6<br>10.5<br>3.8<br>11.2<br>10.4<br>11.6<br>-<br>1,450.6 | 1,323.1       | N/A<br>98.5<br>646.4<br>294.6<br>-<br>1,323.1<br>313.3<br>205.9<br>-<br>6.0<br>9.6<br>22.7<br>-<br>104.2<br>74.2<br>-<br>0.0                                                                                     | REGION REGION REGION REGION REGION REGION REGION REGION PSA/DAU PSA/DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Colored spaces are where data belongs.

N/A - Data Not Available

"-" - Data Not Applicable

"0" - Null value

Table 13-3

Mountain Counties of California Water Use and Distribution of Dedicated Supplied

|                                                                     |                     | 1998          |              |                | 2000                                   |                  |                                        | 2001           |                |
|---------------------------------------------------------------------|---------------------|---------------|--------------|----------------|----------------------------------------|------------------|----------------------------------------|----------------|----------------|
|                                                                     | Applied             | Net           | Depletion    | Applied        | Net                                    | Depletion        | Applied                                | Net            | Depletion      |
|                                                                     | Water Use           | Water Use     | WATER U      | Water Use      | Water Use                              |                  | Water Use                              | Water Use      |                |
| Urban                                                               |                     |               | WAILK        | J.             |                                        |                  | 1                                      |                |                |
| Large Landscape                                                     | 11.3                |               |              | 11.0           |                                        |                  | 11.6                                   | _              | 1              |
| Commercial                                                          | 10.8                |               |              | 10.5           |                                        |                  | 11.2                                   | //             | _              |
| Industrial                                                          | 10.3                |               |              | 10.3           |                                        |                  | 10.4                                   | / /            |                |
| Energy Production                                                   | 0.0                 |               |              | 0.0            |                                        |                  | √0.\bar{\bar{\bar{\bar{\bar{\bar{\bar{ | $\overline{}$  |                |
| Residential - Interior                                              | 39.6                |               |              | 39.0           |                                        |                  | 40.5                                   |                |                |
| Residential - Exterior                                              | 63.7                |               |              | 63.7           |                                        |                  | 66.4                                   | \ \            |                |
| Evapotranspiration of Applied Water                                 |                     | 59.3          | 59.3         |                | 54.5                                   | <b>(</b> 54.5-   |                                        | 56\7 `         | \ 56.7         |
| Irrecoverable Losses                                                |                     | 0.0           | 0.0          |                | 0.0                                    | \0.d\            |                                        | 0.0            | \ 0.0          |
| Outflow                                                             |                     | 57.3          | 57.3         |                | 62.4                                   | 62\4             | $\backslash / \backslash$              | 65.0           | 65.0           |
| Conveyance Losses - Applied Water                                   | 19.9                |               |              | 18.8           | 1 1                                    | . \              | 18.8                                   |                | / /            |
| Conveyance Losses - Evaporation                                     |                     | 10.0          | 10.0         |                | 96                                     | 9.6              |                                        | 9.6            | 9.6            |
| Conveyance Losses - Irrecoverable Losses                            |                     | 0.0           | 0.0          |                | 0.8                                    | 0.0              | \ \                                    | 0.0            | 0.0            |
| Conveyance Losses - Outflow                                         |                     | 9.9           | 9,9          | r - 1          | 9.2                                    | 9.2              |                                        | 9.2            | 9.2            |
| GW Recharge Applied Water                                           | 0.0                 |               | //           | 0,0            |                                        | /                | \\ 0.0                                 |                |                |
| GW Recharge Evap + Evapotranspiration                               |                     | 0.0           | \ \.\_0.0    | 1 1.1          | 0.0                                    |                  | $\backslash \vee$                      | 0.0            | 0.0            |
| Total Urban Use                                                     | 155.6               | 136.5         | 136.5        | 1/53/3         | 135.7                                  | 135.7            | 158.9                                  | 140.5          | 140.5          |
| Agriculture                                                         | _                   |               | \ \ \        |                | . 11                                   |                  |                                        |                |                |
| On-Farm Applied Water                                               | 261.3               | $\overline{}$ | \            | 329.Z          | $\sim 11$                              |                  | 305.9                                  |                |                |
| Evapotranspiration of Applied Water                                 | 77                  | 176.9         | 176,9        | 1              | 248.6                                  | 248.6            | ] 505.9                                | 205.9          | 205.9          |
| Irrecoverable Losses                                                | \ \                 | 6.0           | 176,9        | \              | 7.8                                    | 7.8              |                                        | 6.0            | 6.0            |
| Outflow                                                             | \                   | 64.6          | 8.6          | 1 /            | 55.2                                   | 55.2             |                                        | 82.7           | 82.7           |
| Conveyance Losses - Applied Water                                   | 49.7                | \             | 1 1 5.0      | 61.8           | 00.2                                   | 00.2             | 58.1                                   | 02.1           | 02.1           |
| Conveyance Losses - Evaporation                                     | 30.7                | 10.7          | // 10.7      | - 0            | 23.9                                   | 23.9             | ]                                      | 22.7           | 22.7           |
| Conveyance Losses - Irrecoverable Losses                            |                     | 1 00          | 0.0          |                | 0.0                                    | 0.0              |                                        | 0.0            | 0.0            |
| Conveyance Losses - Mecoverable Losses  Conveyance Losses - Outflow |                     | 26,8          | 3.8          | 1              | 22.4                                   | 22.4             |                                        | 21.5           | 21.5           |
| GW Recharge Applied Water                                           | 0.0                 | \             | 5.0          | 0.0            | 22.4                                   | 22.4             | 0.0                                    | 21.0           | 21.0           |
| GW Recharge Evap + Evapotranspiration                               | 0.0                 | 0.0           | 0.0          | 0.0            | 0.0                                    | 0.0              | ]                                      | 0.0            | 0.0            |
| Total Agricultural Use                                              | 310.9               | 285.0         | <b>206.0</b> | 391.5          | 357.9                                  | 357.9            | 364.0                                  | 338.8          | 338.8          |
| rotal Agricultural Ose                                              | 310.9               | 203.0         | 200.0        | 331.3          | 337.9                                  | 331.3            | 304.0                                  | 330.0          | 330.0          |
| Environmental                                                       |                     |               |              |                |                                        |                  |                                        |                |                |
| Instream                                                            |                     |               |              |                |                                        |                  |                                        |                |                |
| Applied Water                                                       | 1,569.5             |               |              | 1,563.0        |                                        |                  | 1,450.6                                |                |                |
| Outflow                                                             |                     | 1,269.9       | 1,269.9      |                | 1,305.8                                | 1,305.8          | ,                                      | 1,323.1        | 1,323.1        |
| Wild & Scenic                                                       |                     | ,             | ,            |                | ,                                      | ,                |                                        | ,              | ,-             |
| Applied Water                                                       | 6,751.9             |               |              | 4,098.7        |                                        |                  | 1,968.8                                | 1              |                |
| Outflow                                                             | •                   | 2,133.9       | 2,133.9      |                | 1,025.6                                | 1,025.6          |                                        | 313.3          | 313.3          |
| Required Delta Outflow                                              |                     |               |              |                | ·                                      |                  |                                        |                |                |
| Applied Water                                                       | 0.0                 |               |              | 0.0            |                                        | ~ <              | \ \ \d\.0                              |                |                |
| Outflow                                                             |                     | 0.0           | 0.0          |                | 0.0                                    | ).0 <sup>L</sup> |                                        | 0.0            | 0.0            |
| Managed Wetlands                                                    |                     |               |              |                |                                        |                  | \\                                     |                |                |
| Habitat Applied Water                                               | 0.0                 |               |              | 0.0            | ٢,                                     |                  | àο\                                    | \              |                |
| Evapotranspiration of Applied Water                                 |                     | 0.0           | 0.0          |                | 0.0                                    | ر 0              | ] \                                    | 0.0            | 0.0            |
| Irrecoverable Losses                                                |                     | 0.0           | 0.0          |                | 9/0                                    | 0.0              | / 4                                    | 0.0            | 0.0            |
| Outflow                                                             |                     | 0.0           | 0.0          | <i>  \ \</i> ` | \ 0.d                                  | /0.0             | ١ '                                    | \ \ 0.0        | 0.0            |
| Conveyance Losses - Applied Water                                   | 0.0                 |               |              | l 199          | , \ '                                  |                  | 0.0                                    |                |                |
| Conveyance Losses - Evaporation                                     |                     | 0.0           | 0.0          | 1 1 1          | 0.0                                    | \\ 0.0           |                                        | 0.0            | 0.0            |
| Conveyance Losses - Irrecoverable Losses                            |                     | 0.0           | <b>0.0</b>   | 11             | 0.0                                    | \\ 0.0           |                                        | 0.0            | 0.0            |
| Conveyance Losses - Outflow                                         |                     | (0.0          |              | 1/ //          | /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \\0.0            |                                        | 0.0            | 0.0            |
| Total Managed Wetlands Use                                          | 0.0                 | 0.0           | do           | l) \o.o        | \Q.0\                                  | <b>\</b>         | 0.0                                    | 0.0            | 0.0            |
| Total Environmental Use                                             | 8,3 <del>21.4</del> | 3,403.8       | 3,403.8      | 5,661.7        | 2,331.4                                | 2,331.4          | 3,419.4                                | 1,636.4        | 1,636.4        |
|                                                                     |                     | <u> </u>      |              | $\vdash$       |                                        |                  |                                        |                |                |
| TOTAL USE AND LOSSE                                                 | <b>8,788.0</b>      | 3,825.3       | 3,746.3      | 6,206.5        | <u>2,825.0</u>                         | <u>2,825.0</u>   | 3,942.3                                | <u>2,115.7</u> | <u>2,115.7</u> |
|                                                                     |                     | DEDICAT       | LDWATE       | D CHIDDI IE    | · c                                    |                  |                                        |                |                |
| Surface Water                                                       |                     | DEDICAT       | TOWATE       | R SUPPLIE      | .5                                     |                  | 1                                      |                |                |
| Local Deliveries                                                    | 1.954.0             | 1.954.0       | 4.876.5      | 1,516.4        | 1,516.4                                | 1,516.4          | 1,062.9                                | 1,062.9        | 1,062.9        |
| Local Imported Deliveries                                           | 9.7                 | 9.7           | 9.3          | 1,516.4        | 1,516.4                                | 1,516.4          | 8.5                                    | 8.5            | 8.5            |
| Colorado River Deliveries                                           | \ 0.0               | 0.0           | 0.0          | 0.0            | 0.0                                    | 0.0              | 0.0                                    | 0.0            | 0.0            |
| CVP Base and Project Deliveries                                     | 25.7                | 25.7          | 24.7         | 26.3           | 26.3                                   | 26.3             | 18.4                                   | 18.4           | 18.4           |
| Other Federal Deliveries                                            | 1.6                 | 1.6           | 1.5          | 1.6            | 1.6                                    | 1.6              | 1.6                                    | 1.6            | 1.6            |
| SWP Deliveries                                                      | 0.0                 | 0.0           | 0.0          | 0.0            | 0.0                                    | 0.0              | 0.0                                    | 0.0            | 0.0            |
| Required Environmental Instream Flow                                | 1,806.4             | 1,806.4       | 1,806.4      | 1,241.9        | 1,241.9                                | 1,241.9          | 982.2                                  | 982.2          | 982.2          |
| Groundwater                                                         | 1,000.4             | 1,000.4       | 1,000.4      | 1,241.9        | 1,241.9                                | 1,241.9          | 902.2                                  | 302.2          | 302.2          |
| Net Withdrawal                                                      | 26.7                | 26.7          | 26.7         | 26.7           | 26.7                                   | 26.7             | 40.9                                   | 40.9           | 40.9           |
| Artificial Recharge                                                 | 0.0                 | 20.7          | 20.7         | 0.0            | 20.7                                   | 20.7             | 0.0                                    | 40.0           | 40.5           |
| Deep Percolation                                                    | 33.8                |               |              | 34.5           |                                        |                  | 33.0                                   |                |                |
| Reuse/Recycle                                                       | 55.6                |               |              | 57.5           |                                        |                  | ]                                      |                |                |
| Reuse Surface Water                                                 | 4,928.9             |               |              | 3,347.0        |                                        |                  | 1,793.6                                |                |                |
| Recycled Water                                                      | 4,920.9             | 1.2           | 1.2          |                | 1.2                                    | 1.2              | 1,793.6                                | 1.2            | 1.2            |
| ,                                                                   | 1.2                 | 1.2           | 1.2          | '              | 1.2                                    | 1.2              | '.2                                    | 1.2            | 1.2            |
| TOTAL SUPPLIES                                                      | <u>8,788.0</u>      | 3,825.3       | 3,746.3      | 6,206.5        | 2,825.0                                | 2,825.0          | 3,942.3                                | <u>2,115.7</u> | <u>2,115.7</u> |
| Delenes Hee Complies                                                | <u> </u>            | -             | -            |                | -                                      | -                | 0.0                                    | -              | 0.0            |
| Balance = Use - Supplies                                            | -0.1                | 0.0           | 0.0          | 0.0            | 0.0                                    | 0.0              | 0.0                                    | 0.0            | 0.0            |

Figure 13-2
Mountain Counties of California 1998 Flow Diagram

In Thousand Acre-Feet (TAF)

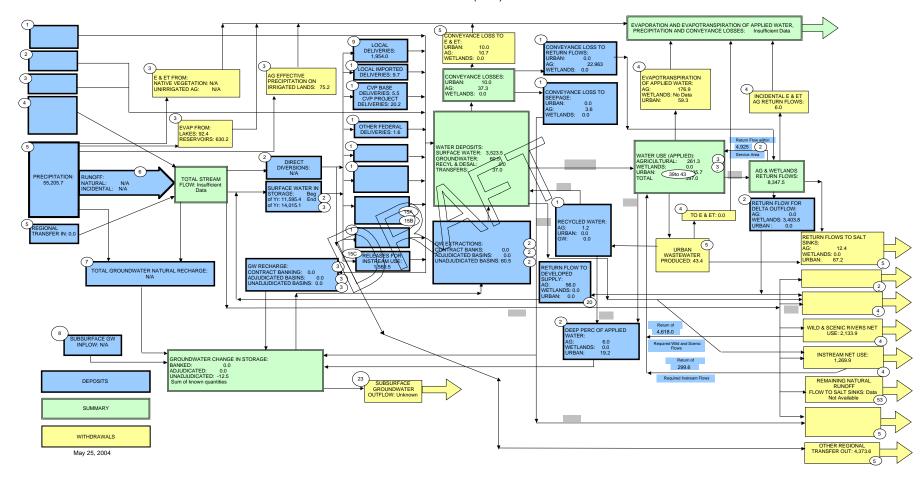



Figure 13-3
Mountain Counties of California 2000 Flow Diagram

In Thousand Acre-Feet (TAF)

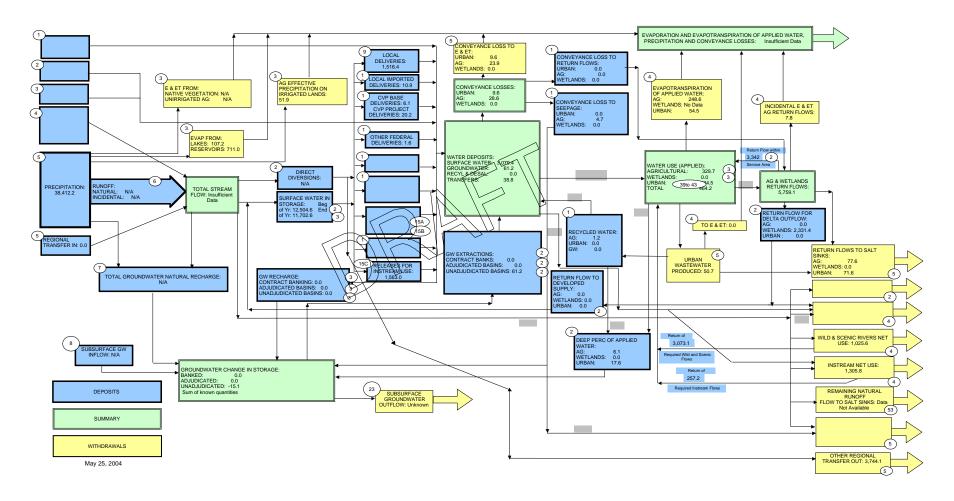
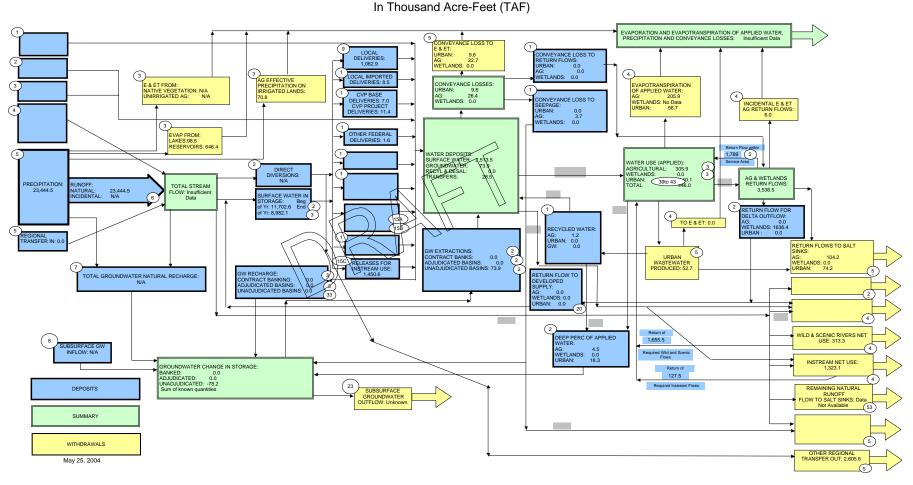




Figure 13-4
Mountain Counties of California 2001 Flow Diagram

